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ABSTRACT

A perturbation theory of heteronuclear diatomic molecules based on
isoelectronic homonuclear diatomic molecules is developed. The hetero-
nuclear molecule is regarded as the isoelectronic homonuclear molecule
perturbed by a transfer of charge from one nucleus to the other. The
molecular energy, equilibrium internuclear distance, dissociation energy,
and electric dipole moment are considered. The Hartree-Fock approxima-
tions for calculating the effect of one-electron perturbations are also
discussed.

The theory is applied to the isoelectronic molecules CO and N2.
By making use of the uncoupled Hartree-Fock approximation, the first-
order wavefunction in the perturbation series is determined by the
variational method. The calculated molecular energy of CO 1is too low
and the dipole moment is tco large in magnitude. However the calculated
polarity is in agreement with the results of recent Hartree-Fock

calculations at the equilibrium distance.

* This research was supported by the National Aeronautics and Space
Administration Grant NsG-275-62.
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I. INTRODUCTION

The motivation for this investigation is the desire to compare the
molecules €O and NZ’ to understand their differences, and in particular
the electric dipole moment of €O and its sign. The striking similarity
of the two molecules can be seen from Table 1I: the bond distances
differ by only 3 per cent, and although the dissociation energies
differ by about 13 per cent, the total molecular energies are within
3.5 per cent of each other. The polarity of the dipole moment of CO
is very difficult to determine, but was deduced indirectly to be c O+
from microwave measurements of rotational magnetic moments and
J = 1 &= 0 rotational frequencies for various isotopic species of
CO. However, despite the initial support of this result by Ransil's
Hartree-Fock calculation2 using a minimum basis set, the recent
Hartree-Fock calculations with enlarged basis setsB’4 appears to be
converging to a computed value of the dipole moment of CO equal in
magnitude, but opposite in sign, to the accepted experimental value.l’
Nesbet3 pointed out, in a critical discussion of the experimental
determination1 of the polarity of the CO dipole moment, that the sign
of the polarity has not in fact been established definetely by
experiment.

In this paper, a perturbation theory of heteronuclear diatomic
molecules based on the isoelectronic homonuclear molecules is
developed. The heteronuclear moclecule is regarded as the isoelectronic
homonuclear molecule perturbed by a transfer of charge from one nucleus
to the other. The situation is favcrable for such an approaﬁh since
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the perturbation operator is simply a sum of one-electron terms. The
molecular energy, equilibrium internuclear distance, dissociation energy,
and electric dipole moment are considered in Section II. In Section III
the various Hartree-Fock approximations for calculating the effect of
one-electron perturbations are discussed. In Section IV the applicability
of the perturbation theory is carefully considered and the theory is

applied to the molecule CO based on NZ'

I1. GENERAL THEORY FOR DIATOMIC MOLECULES

1. Molecular energy

Let the heteronuclear molecule AB of interest have nuclear charges

X, =2Zo(1TA)
Zg=Zo(1-A) @b

and be taken to be the 2{ -perturbed condition of the isoelectronic
2 -
homonuclear molecule CC with nuclear charges A 0 = (ZA+ z a/?. «

The electronic Hamiltonian of the 25 -perturbed heteromolecule can be

written

]4 = )‘)Fo t AV

where Ho is the unperturbed electronic Hamiltonian and )\ is the

A=(24-20) /(2 + Z¢) .

(2.2)

parameter

(2.3)



The perturbation V/ is 3 sum of one-electron operators

N
V=2 %0 -g") o

L= t
. g »
where Y;.L and YB' are the distances to the electron 4 £from the
L

nuciei A and B respectively. An important property of V is that
it is antisymmetric with respect to inversion or interchange of nuclei
A and B (u-symmetry).

The wavefunction @ for a particular nondegenerate electronic
state and internuclear distance R of AB can be expanded in the

familiar Rayleigh-SchrBdinger power series in A

U =9% A7%+ O (A2) @)

6
Kato  has proved that the series converges for a perturbation such as
0
Eq. (2.4), at least for small enough )\ . \:k is the wavefunction of
the homonuclear molecule for the same electronic state (i.e., that

which is adiabatically correlated by changing A ) and internuclear

©)
distance R. We shall take \_.k and w to be normalized so that

(RQ <\:T_’(|)) \I(O)> = O . The electronic energy expansion is

W= W2 xw® 4+ 0(a%) (2.6

, . . * 0.
where the terms in odd powers of A vanish by symmetry. is the

%
This can be seen by observing that the energy must be invariant to an
interchange of nuclei A and B, i.e., A—>=X\ .



sientronic energy of the unperturbed homonuclear molecule, and the

o g 2) .
3ocond-order energy coefficient is given by

> TS AV I
= (B v >

Tie wolecular energy E of a distomic molecule is the sum of the

electronic energy W and the aeslear repulsion energy;

EIR)S WR) + 2.2, /R . @8

Heuse by using Eqs, 2.1 aid (2.6), we obtain

TV (WOl R) OO .

. 2 : . . 4
Since W{) st pe negative for a ground state, it follows that the
molecular energy E of the heteronuclear moiecule must be lower than

. ‘ . ©) )
tiiat of the homonuclear molecule E at least for small )\ °

2, Equilibrium intesnuclear distance

Let RD be the equilibrium internuclear distance for the

hemenuclear moleculie Cc ; that 1s

& )y

Simiiarly let ﬁe be the equilibrium internuciear distance for the

JE®

IH

(o& )

'f Tl —_ (2.10)
k\ CRK )R::KO_DO ¢ ’

heteronuclear molecule AB; that is




(%#E-)e = (%\%)K:Re = 0 (2.11)

Differentiatirz Eq. (2.9) with respect to R we hava

(0) (2)
jfé O\E _?\ (O\W + Zo) + & ;\4—) (2.12)

0
If we put R:ﬂe and expand dE(ydK about KD , we obtain

R ¢ [ B

or

‘ @
KQ‘R :-—»&[(O\W) Z
0 ) + =0, ¢ (2.13b)
Ry dR +0(Y)
(0)
where ‘ko =(d2E d&) is the force-constant of the homonuclear
molecule. Thus Ke Ko is cf order )\2 , and the sign depends on the
relative magnitude of the two terms in the square brackets; dW(Z)/dR
2)

will be negative in general because W( * is negative at R= 00

and becomes zero at R = 0 -

3. Dissociaticn energy

The dissociation energy of the heteronuclear molecule AB, Dg,

and that of the homonuclear molecule, Dy, , are given by



De = E(0) - E (Re)

. (2. 14)
Dy = EV(w) —EQR,)
Expanding E(Re) about RO , we have
de (2.15)
E(Re) = E(R) + (Re=Ry) (),
Using Eqs. (2.12) and (2.13}, we ger
ERe) = E &) + G(A%) (2.16)

Hence making use of Eqs. (2.9) and (2.16), we obtain

D, =D, = A* (A W(z)(R ZL/R, ] + O(1%) (2.17)
where

aWP(R,) = WI(R,) = Weo) | .10

SinceAW(Z)(Ro) >O in general, the sign of DO —De depends on

the relative magnitude of the twe terms in Eq. (2.17).

4, Electric dipole moment

The dipole moment of the hefteronuclear molecule AB is




(> =<p, md >
=POMT D+ e AR w2 + o)

(2.19)

where A is taken to be on the Zeaxis at Rf2 and B to be at -Rf2,

Q is assumed to be real for simplicity and

N
== 2T B A Z,R (2.20)

The dipoie moment exprezzicn <an oniy conrain odd powers of since
E Y P

it changes sign if A changes sizn. Hence, using Eq. (2.20), we get
- () .(0) 3
</U‘>~—=)\(ZOK+— a( M >)+(7()\ ) (2.21)

. . Ny o . - e
the dipole moment %as been defined to be negative fcr A B .

, - 1) - (0)
The terms in Egq. (2.21) tend to canc s 1in <\2
T e1ms Eq. (2.21) ta cancel since }/(Al;k

is almost certainly negative. I see this consider the spectral expansion

©)
‘turhed sigenfuncrions \:E :

in terms of rhe urpe
P n -

&

_ - V,
<\:k(}1)/u L_1{(0) — E o'ru/uno (2.22)

nE0 Ep— Eq .

The operator \}’L and /‘AL for one electron are sketched in Fig, 1.
The important pcoint %o motize is that both V and/M have u-symmetry,
se th.atWEO everywhers, This means that \/‘m),lno>0 for the lower

excited states. and could c¢nly be negative if the transititon density



f‘no has different signs where V is the largest and where M is
the largest. This is only likely to occur for highly excited states,
if at all. Since EO*EK <0 ; we conclude that <\:_E(}“/u g—{(o)) ,
the dipole due tc the electronic charge shift caused by the

Z -perturbation, is negative. This conclusion is supported by the
UnsBld approximaticn for the sum in Eq. (2.22), which replaces the
increasing denominators anE.n by that of the smallest non-vanishing

term, say Eo - EI

() - (0)
< ) 7,00) ~ <\I y V/u \:k >
\k )/u \:E ) Eo - El ’

(2.23)

This approximate expression is necessarily negative.
To decide the sign of </M> it is therefore necessary to perform
an accurate calculation of the electronic term. It is interesting

7,8

to note that by Dalgarno's interchange theorem this can be written

in the alternative form
) 0~ __ ) )
b, AT > =XV v E® (2. 24)

@)
where X is the solution of the equation

(rH:o - E(O)) X(U n (/M _ )\ZDK> \412(0):0 . 225,

Since both V and /u are one-electron operators the interchanged

form does not possess any obvious advantage.




5. Schwartz discriminant

A simple check on the validity of merely taking the leading
0
terms in the power series for W~WU in Eq. (2.6) and for </M>

Eq. (2.21) is provided by the Schwartz-like inequality

2 2
25 —‘/113— W il > (2, M)Z (2.26)

ne0 Ep—E, n¥0 £y=En N E,~Emn

Using Egs. (2.6), (2.21) and (2.22), we obtain

WU W)( (P\Z oR — </M>) (2.27a)

or

W(O)~'W ()\ ZoR — <MD )2
2 o (2.27b)

where o( is the polarizability of the homonuclear molecule parallel

to the axis, given by

/“03&
oA = — >, L
" BB . @2

This inequality is checked below for the case of CO and Nz.



6. Energy difference for separated atoms

The electronic energy dififernece at the infinite internuclear
‘ © ‘ .
separation, EW(BO)~W (00) s, can be easily computed using the
]_/'Z -expansion for the atomic energies. For an atom with nuclear
charge ZO and N electrons, the electronic energy can be expanded as

follows

C(Z,N) = 272w +2Z, eV +Pw)
+ W) /Z, + 0(1/23)

(2.29)

For the perturbed condition, that is. an atom with nuclear charge

Zo(l-b\) and an ator with nuclear charge Zo(l-»)\) , the total energy is

W) = ¢ (Z,U+A),N] + E[Z,(1-1), V]
=2 { 22 €W +2,6%0 + €W+ €W 2t}
ten {27 e®w) + Pw/z, +---}
+ 2 )ﬁ{ 5(3)(1\/)/20 ¥ - } (2.30)

Since W(o)(oo)z ) i (zo )N) . the energy difference is given by

W () =W o) = 2 3% { 22 1) + €M) /2, + )
t 6 (%),

(2.31)

That is, by Eq. (7)

W (00) = {27 "+ €Wz, + 6 (1/22 )j\ .32)

10




The interesting feature is that VVGD(°Q) contains neither the aver.:c
repulsion term GU)(U) nor the second order term e(z)((\/) . The
third order term E}3Qfé) is expected to be very much smaller than
GS&V), If the {th electron in a hydrogenic orbital has principai

quantum number ?11 5 then

N
©) 1 1
€ N) = — = 7 —
g =1 ne

Note that if ZA = ZO + 1 and ZB = Zo_l 5 SC tlLial
)\20 =1 , then

1

——

| M (2 ey

v .

TN+ (2 0) =28 (2, N) = —

W L\/) <

This corresponds to the energy difference between the ion pair 4 1+ B

and two neutral atoms, C, each having N electrons.

I1I. THE HARTREE-FOCK APPROXIMATION

In this section the calculation of the effect of a one-elect. .
perturbation on an atomic or molecular system is discussed. 1t ha:
already been pointed out that the perturbation V [ Eq. (2,4)] i
a sum of one-electron terms. Any practical calculation of the
perturbation effect will have errors due to the actual solving oy ti.
perturbation equation and to the inevitable inaccuracy of the
unperturbed wavefunction. The latter source of error may be more

serious, and hence the Hartree-Fock approximation is of special



12
importance in treating the unperturbed and perturbed systems on an equal
hasis.

Since a comprehensive review paper on the calculation of the effect
. . 9
o’ one-electron perturbations on atoms has recently appeared” the Hartree-
Fock approximation alone will be discussed.

. 10-12
1. The coupled Hartree-Fock approximation 0

To avoid mathematical complexity we suppose - the atomic or molecular
system has a closed shell configuration. Then in the Hartree-Fock
approximation to the perturbed system the perturbed wavefunction is

written as

2n
v =4 E (1) 3.1)

where )4Pis the normalized antisymmetrizing operater. Restricting ii:»

problem to a scalar, one-electron perturbing potential in first-order,

(3.2)

V::.)\Z_.V(i) o,

the spin-orbitals 42 satisfy the eigenvalue equations

(FOtava) gw=wm $0), (1=1,2n) Y
where

F=-Lud -5 22 5 (Tw-K.
2 Vi < Yy Rt J ‘)J (3.4)
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Jj(i.) and Kj(l) being defined by

JJ-('L) =J lzfr(”‘ O‘T (3.5)

]

N 3.6)

N PR AT ASS
Kj(c)éoh(d —-f ‘. de ﬁﬁ‘(;,)

If we substitute

@)
éf- = ‘#—L +)\Z)".LU)+)\2 12 + .- @3.7)

and

w; W-i” + A uf.f” + A uf-fz) + - (3.8)

into Eq. (3.3), the equations for various orders are obtained by
equating equal powers of A . Thus, the zeroth-order equation

defines the orthonormal set of unperturbed functions (‘7 s
(%

(F(L)" (o))<‘>()—0 (i=1,,2n) (3.9)

where

— Zn( 2N .
Fw=-z% -5 £+l (TO-KO] 4

' J:.‘



3%()  and R{(i) being defined by
2
0, _ (-
J}(u)—f”a(“” dz. (3.11)
Y. J
|

oy v [ F G EG)
KJ(L)qD‘k(L)\ ~i R At 4 o)

{ . (3.12)

The total unperturbed wavefunction is

‘:L.(O)z/4 ﬁl CP.L(L) (3.13)

and satisfies the equation

H ‘:E © = WY \JTj ©) (3.14)

where
2n 0
0
2 Fow=2.(7, - K) .15
L<.J J
J% and ng being given by

fl‘f’(dl [$.6)(° It oz,

‘ _J¢(L)+(L)¢(J )$,0) Az de

(3.16)

i
J (3.17)
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and W‘o) is the unperturbed Hartree-Fock energy,
2n 2
© > ©) n 0
W= W, = 2 (J- - K.o.) (3.18)
S -~ N - L L
L-' L<J J J P

)
The first-order equation determines 60 5
L

2n
(Fy @ =w)4)+(v-u) ¢, == S Fo-Ke o

where J;'(i) and K}(l) take the forms

j (i) ] ‘? )(J)CP(J) + /70‘“(,)4”, ;

G (3. 20)

From Egs. (3.9) and (3.19), \AJ; are determined;

m~(4’k, 4’)+LUJ <t> $.dz, —ﬁ K. ¢alz (3.22)

Similarly w:fz’ are obtained from Eqs. (3.9), (3.19) and the
second-order equation. (See reference 10). The total first- and

second-order energies are given by

t Dalgarno' s9’ 10 expression for W(z) includes

_Z Z((’) V¢-><€ﬁ“ +> . Those terms, however, vanish
L w5 leads t Uald) 3 -
since” lf,_) ij> - S"J eads to <<'>4. )‘63 >+<$oi; 43> 0.
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Wu): 2_\ <‘P U"‘P> (3.23)

L=

W — 8(4: v?‘“)

(3.24)

The perturbed orbitals in Eqs. (3.19) are coupled together both by
direct and exchange interactions, and consequently the equations are
awkward to solve. This coupled approximation has so far only been
applied rigorously to the evaluation of the polarizabilities and

- 10,11,13

shielding factors for the He and Be14 sequences, but with

very encouraging results.

2. The uncoupled Hartree-Fock approximation.

The difficulty in solving Eqs. (3.19) is due to the coupling terms
which arise from the demand for self-consistency in the presence of the
perturbation V. A simpler set of equations for the first-order
wavefunction can be obtained by neglecting the effect of the perturbation
on the Hartree-Fock potential.10 The perturbed equation for this so-

called uncoupled Hartree-Fock approximation is then

(H, +Av — W)Y =0, .25
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where Ho is the Hartree-Fock Hamiltonian for the unperturbed system,

given by Eq. (3.15). There are two methods for obtaining the first-order
u

perturbation equations for the one-electron first-order function 42 s
L

corresponding to Eqs. (3.19) for the coupled approximation. These

methods lead to different equations, but in spite of this the relation
between them has not been clarified in the literature. The difference
between the methods depe nds on whether  Eq. (3.25) is first separated

into one-electron equations, to which perturbation theory is then

applied (method A); or whether the perturbation theory is first applied

to Eq. (3.25), and the resulting first-order many-electron equation is
then separated into one-electron equations (method B). Both methods

lead to the same results provided the perturbation equations are solved
exactly. Method A 1is considerably simpler than method B, and is
therefore to be preferred when no further approximatioﬁs are involved. On
the other hand, if the equations cannot be solved analytically, and a
variational approximation is being sought, the variational form of
method B 1is appropriate. The essential difference is that the equations
of method A assume that the different perturbed orbitals are orthogonal,

whereas this is not assumed in method B.

Method A
The perturbed Hamiltonian Ho + AV occuring in Eq. (3.25) is a

sum of one-electron operaters, and may be written in the form

Z[F® +Avo] P =w
L

(3.26)
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where

— 0
W=w-Z (3] — K )
<3 J J
J (3.27)

and the total perturbed wavefunction ll? must have the determinantal

form

N
=41 90

L=1 (3.28)
The many-electron equation (3.26) can be separated into one-electron
equations which are uncoupled, provided that the orbitals 4%’ are

orthogonal to one another. This leads to the equations

(R —u)¥, =0, (is1,-5a0 o

which are analogous to Eqs. (3.3) for the coupled approximation.

Eqs. (3.29) are consistent with the assumption of orthogonal orbitals,
. ot . a : -~ . . 3
since it follows directly that <6ot)lfj> 0 L-f U{ :(:U{‘ , or if
4{ and q% have opposite spin, and indeed, even in the case of

%

degeneracy which is not split by VU~ , it is always possible to choose

the orbitals so that
<Zf1 ) Zfd Y

The perturbation treatment of Eqs. (3.29) is similar to that of Eqs. (3.3),

(3.30)
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but simpler. The first-order equation is

(F; - WL(O)) zft) + (v - w-L“’) 4>i =0, (3.31)

where ql = 2?.(0) and W—t”: (431'\J"FL>

L L
The total second-order energy is

VV CZ)::: i%fs IAI(Z)

- L
v=|

. xn ) (3.32)
== <4’-L)v5ﬁ_ >

L=
which is of the same form as Eq. (3.24). Note that it follows from
Eq. (3.30) that orthogonality of 42 and 43 through first

order in )\ require that
()

<(f-t‘),43-> +<4’L}?;‘> =0, (3.33)

This condition can be easily seen to follow from Eq. (3.31), and in

particular

d 0 ) ) . L. . (3.34)
UU% — ]AG P} L 4:J
Method B
10,15

In this method the many-electron SchrBdinger equation (3.25)
is first of all expanded in powers of ;\ . The zeroth-order

equation is the unperturbed Hartree-Fock equation (3.14), The first-

order perturbation equation is
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( H, “W(O)) %‘” +V - Wm) J ©— 0 (3.35)

where V is the sum of one-electron perturbation, Eq. (3.2). We

are interested in solutions of Eq. (3.35) which have the antisymmetrized

form, derivable from Eq. (3.28),

2N

)y 2n
\JTf = ;4 l CE.(J)?.L(“(L) (3.36)

Eq. (3.35) may be separated into one-electron equations by the
following procedure: Substitute Eq. (3.36) into Eq. (3.35), multiply

¥ * .
by all 4%26ﬁ) except 4%(1) , and integrate over all electronic

coordinates except of electron L . The result is
) Y
(Po — W )Zﬂ_ +(V—V‘fim)4>z
_—:% {(W}o) Wy ¢ <4, v 43
J¥FL 5w J)(fi >t ) l%j.

(3.37)

The cross terms on the right hand side of Eq. (3.37) arise from the

—

determinental form of ?if , and can therefore be described as
15
exchange terms. They guarantee the consistency of the equations
W

irrespective of the value of the integral <¢.’lf_'>, as can be seen

J L

¥
by multiplying Eq. (3.37) by 4} and integrating.
Clearly the solutions 4*” of -Eq. (3.37) may not be identical with
L

those of Eq. (3.31) derived by method A. Thus, it is easily seen that
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me ) 2n
: [E%' (3'3‘7)} - Zﬂ (e ,(3.3!)] +7,C..® (3.38)
3 L % a2 9

it
where the coefficients Ci' are arbitrary. However, the total first-
order wavefunction gP(LL given by Eq. (3.36), is essentially
independent of the coefficients C;j , and two methods therefore give

the same results. The second-order energy is given by

W(z)= <ﬂf—(l) v/ ‘_j(w))
= ZZ?_{ [ <éfi“): V(‘bi> B §1<‘|},V¢;><€':4})},

=1 (3.39)
It is easily seen that VVCZ) is also independent of the value of the
coefficients CLI . If the orthogonality condition (3.33) is
satisfied, the double summation vanish, and Eq. (3.23) for W(z) is
recovered.

Method A 1is analogous to the procedure used to derive the
equations of the coupled Hartree-Fock approximation, discussed in
Section TII.l. Methods A and B are equivalent, but since Egs.
(3.31) and (3.32) of method A are simpler than Eqs. (3.37) and
(3.39) of method B, method A 1is clearly to be prefcrred when no

further approximation is contemplated.

Hylleraas variational principle

For most molecular systems it is not possible to solve the first-

order perturbation equation (3.31) analytically. However, variational
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() 2
approximations to \E and W()can be found by using the Hylleraas

variational principle.lo’15 This principle can be applied either to the

total first-order perturbation equation (3.35) or individually to the
equations (3.31) for the one-electron first-order functions 4¥U
The application to the many-electron equation (3.35) is straight-

forward. For the ground state of the system, the functional

Wu) _ (\:P_‘“, (H. - W(‘”)i(“>+<@;)(V—W“’)tI2(°)>
t <@w,) (v-wt) @“’} (3.40)

is an upper bound to the exact second-order energy vvuJ. The first-
. . Fw
order trial function EE must have the same form as the exact

function q&ﬂ) > given by Eq. (3.36), namely

1)
‘:\Tf-( /4'-”' 4’( )‘f“’ L) . (3.41)

When Eq. (3.41) is substituted into Eq. (3.40), it may be reduced to

a sum of one-electron functionals,

Ny (2) ~ )
E:: l&f (3.42)

where

"‘Mj:(z) =/ ?f’:“’ (Fo_wi(o>)'47;m>+<ZE(|))(U._ML(0)¢C> +<d> (- W‘”{”‘“

B -IGUE 050 v
HL, VRS EDY o

\/
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. . w) o
The minimization of W ~ with respect toc variations in the trial functions
10!
?’ is therefcre equivalent to the minimization of the individual

N/ L
one-electron functionals uﬁu)a The functional \Uy3) of Eq. (3.43) is

an upper bound to the exact expression

W-L(z)= <4>L ’ Zﬁ(u> _ §:<¢l)v¢j><<ﬁizﬁ(“>

(3.44)

) P
where 42 satisfies Eq. (3.37). 1In fact, if Q{U):: q%” +-5.?£) »
L L

| then

f\..z)

MW= (RSP (F-u)QSEVN S o

where

R=1-5 1433

| projects out all occupied zeroth-order spin-orbitals.

| ~(@)

Lo
The minimization of uﬁ. with respect to arbitrary variation 44”
8

leads automatically to the firvst-crder perturbation equations (3.37) of

method B since the orthogonality conditions (3.33) are not assumed in

=)
the trial function QE of Eq. (3.41). If they are assumedj. then

as pointed out above, Eq. (3.37) can be replaced by Eq. (3.31).
An alternative variaticnal procedure cculd be based on the

simpler one-electreon functionals suggestad by the equations of method A
*+ The sufficient condition for the crthogonality relations (3.33) to be
valid for trial functions 4?&’ ; and therefore for Eq. (3.37) to

reduce to Eq. (3031é‘_. is that 5?‘”:‘(4’. (all j31 ) are
allowed variations. J
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[Eq. (3.37)J , namely

(l) < me ( MI;:(O)) Zé:l)> + < ?f:_(”,(v" WI(U) ¢(>
+ <4>-L v - Wé')) ?‘?) . (3.46)

However, these functionals are not upper bounds to the exact second-
order energies UU%Z)(except for the lowest one-electron level), and

L
hence it is necessary to impose the orthogonality conditions, Eq. (3.33),

on the trial functions, namely
W —~
COL 8+ 89>=0, (all 4,;), .47)

. W . .

The procedure of making the N of Eq. (3.46) stationary with respect
-~~~

to the 4?”, subject to the constraints, Eq. (3.47), is completely
equivalent to that based on the functional, Eq.(3.43). For arbitrary
variations S%&’ , the Lagrange multipliers associated with the
constraints lead to the cross terms on the right hand side of
Eq. (3.37). 1t is interesting to note the relationship between the
variational procedure discussed here for the individual electrons, and

3

that proposed by Sinanoglu for excited states of a system.

/
Karplus-Kolker approximation

The evaluation of the first-term of Eq. (3.43) is complicated by
the presence of the non-local exchange potential in Fo > which gives
rise to two-electron integrals. Karplus and Kolker15 neglect these

terms for the sake of simplicity. Here we briefly discuss the




approximation involved.

If we substitute

§'<4 %

1 L 'L (3.48)

into Eq. (3.43), the fi

5

et term zan be written as

[

<2?i(li (Po _ wl(o)) z!z(‘)> = <4)lfﬁ ;[Fo, "E] ‘h} ; (3.49)

where the square brackets dencte a commutator., By substituting Eq.

(3.10) inte Eq. (3.49), we obiain

(B (R -w)6">
= -%<¢1 E’ 3 [VZI "E] Ci>;>“ :2:(‘1’1?‘; )[KJO’:E] 4’;> (.30

where K} is a non-local exchange contributicn to the potential
defined by Eq. (3.12}). The second summation term in Eq. (3.50) is the

5 5 12 - ; . ,
one neglected by Karplus and Kelker, It would clearly vanish if
Kg were a local potential. The explicit form of the jth term in

the sum is

~ ~ N S
ot (K7, 14D :fdz' cﬁz*(uﬁ*(l)@(ufdzz $Af@é
2
~de. Kof oo, ASKAC

s . (3.51)
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This difference may be small in some cases, even though K? itself

is not negligible. If the Hartree-Fock potential in Fo is replaced
by the so-callled Sternheimer potential,17 which is local, then the
two~electron terms (3.51) do not appear. However, the Karplus-Kolker
approximation does not imply the use of the Sternheimer potential, or
the neglect of K% , but simply that the integrals in Eq. (3.51)
cancel each other approximately.

Using this approximation, the first term in Eq. (3.43) can be

written in the form

<\25‘,;u>) (F -u;®) 2}:‘“> - _ %@’: E (v E]4’L>
= ’é”@t,w“?:lz $.>

(3.52)

where the commutator has been reduced by a well-known procedure.8 By

substituting Eqs. (3.48) and (3.52) into Eq. (3.43), we have

Aué?) —_ E%-<:4E/ I‘Zﬁé‘2(¢kj> {_<:4%”,(\F_.u&fU)<:¥ifP¥€)ch:j>
2n —~ ~X o~
-2 (W) <o, T $ 5+, ET0NE vy,

(3.53)

-

This equation only involves one=-electron integrals.

Most of the previous calculations of second-order perturbations
are closely related to the uncoupled Hartree-Fock approximation. The
dipole and quadrupole polarizabilities and shielding factors for the
helium isoelectronic sequence have been obtained by numerical

. . 17 . .
integration™ of the first-order equation and by variational methods.18

26
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For beryllium the solutions of Eq. (3.37) for dipole and quadrupole
perturbations have been obtained by Dalgarno and McNamee.19 The
variational method using Eq. (3.53) has been employed for the calculations
of magnetic susceptibility of diatomic molecules by Karplus and Kolker15

and atomic dipole polarizabilities by Yoshimine and Hurst,2

3. Accuracy in the Hartree-Fock approximation

To examine the error involved, one can consider the effect of the
change in the unperturbed Hartree-Fock wavefunction SEJO) produced
by applying a perturbation which is the difference between the Hartree-
Fock Hamiltonian and the actual Hamiltonian of the system. Thus it
has been shown by Dalgarno10 that in the fully coupled approximation
the second-order energy is correct through the first order in the
error of the unperturbed Hamiltonian, whereas for the second-order
energy derived from the uncoupled approximation there is a non-vanishing
first-order correction. Hence coupled approximation should lead to
much more accurate results than the uncoupled approximation. If we
employ Eq. (3.53) to solve the perturbation equation by the
variational method further sacrifice in accuracy is clearly made. 1In
the evaluation of the matrix element < A:(U (F‘ - VU'-(O)) Z?U) >

Lo 0 L v
the terms which arise from the nonlocal exchange potential in F,
are neglected, and in this way the difficulty of evaluating two-
electron integrals can be avcided.

In considering the practical approximation further introduction

of error has to be recognized. Since the analytical Hartree-Fock

orbitals are obtained in general by expanding the one-electron



. )
rbitals in terms of a finite set, the resulting lk is no lenger
the exact Hartree-Fock sclution to the problem. Thus first-order

w<2> are introduced, even for the

errors in the second-order energy
coupled arproximation, by the lack cf completeness cof the basis set.
Furthermore, it should be unoticed that, as Epstein has pointed out, if
one uses an approximate ground state wavefunction in the variaticnal

i principie for the second-order energy the approximate energy need have

no special relationship to the exacr znergy (it may be larger or

| 21 ) . . .
v smaller). One obtains a less w2.l controlled approximation to the

o~

22 " . . .
exact second-order energy. However, for a good analytic approximation

to the ground state Hartree-Fock functvion, the first-order corrections

to the second-order energy way be expected t2 be small, and we may

obtain a sufficieatly well controliled approximation to the exact second-

i order energy.

4, Variational sclution ¢f perturbaticn eguation

An approximarte variatiocnal solution of Eq. (3.37) may be obtained

by minimizing the functional iI&@J given by Eq. (3.53). We put

o
f. =2 ag U (3.54)

where uh are a finire (real) basis set, and Qi{{ are linear
variational parameters. By introducing Eq. (3.54) into Eq. (3.53)

ﬁuu)
the condition S'vui =0 is eguivalent to requiring
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3 W
8
—_ = - .
3 Ain ) *k =1, ;o (3.55)

These conditions lead to the set of simuitaneous linear inhomogeneous

equations

k %

(3.56)
wh%;f . R
Alm = < 4>'¢. ) (Vufc'vu”‘ )cP,.>
— % ( w}(o)_ WL(O))<+j ’ Mﬁ¢1\><¢1,umﬁ> (3.57)
I¥L '
B': = <4>l;vuk c’>t.>
2n
BEAN TR M6 W
(3.58)

The coefficients aiﬁ are found for each orbital by solving the set
of Eq. (3.56). Once those coefficients are obtained the contribution
to the second-order energy from (th spin-orbital Uﬁ}z) [qu (30382J

is given by

Q) __ %
Wi = 2% Qg B
+ t (3.59)
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where B:h are given by Eq. (3.58). The total second-order energy is

obtained by summing the contribution of each spin-orbital.

5. Dipole moment expression

In the Hartree-Fock approximation the leading term of the dipole

moment of a heteronuclear molecule AB may be written as [Cf. Eq. (2.212]

O = A LFR +Z<‘I_’“,)/“ L:l_/w)>] | (3.60)

where SE is the unperturbed Hartree-Fock function,Eq. (3.13), and
)
EE is given by Eq. (3.36). By substituting Egqs. (3.13), (2.20)

and (3.36) into Eq. (3.60), we obtain

My =A (2R +BZ§ M)

(3.61)
where
O = — 2 + Db zbdd ¢
ﬂl - Ly v R4 ) J IR >.
(3.62)

If we intoduce the variational solution of the first-order function

~~ PN ~
é?(u = 4{'?_ where F. has the form of Eq. (3.54), Eq. (3.62)
[ L

becomes

W)

4
ﬂi = % aHz DL

(3.63)




where

Df = — <<t>.”zuk¢.t> + ?Z:<¢1,24}><4’5,Uf«¢;>.

(3.64)

Hence the dipole moment may be approximated by the following formula

2N .13 v'{z
(wy =A[ZR +2L 0. 4w DY
=R ' (3. 65)

Note that, if the orthegonality condition (3.47) is satisfied,

Eq. (3.65) reduces to

2N

=2 (2R - 22

L=t

Q.
{

th@%, 2 Uy, 4)1 >J .

=0

(3.66)
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IV TREATMENT OF CO BASED ON N

2

1. Electronic potential energy curves

U] © _
Let \& ) and W ) be the wave function and the electronic
\ ]
I+t . ) u
energy for the lowest 21 state of N2 which dissociateg to N
() (
atoms in ground 4'5 states, and \J_EZ and W?_O) be those for the
‘2 , . , s . + NI
q state of 1\12 which dissociates to the ions, N and N , in
ground 3P states. Then using ronizaticn potential23 and electron

., 2
affinity 4 of N arom, we cbtain

W, () =W (o) = (LR of N) — (E.A. of N)
(14.5¢ — 0.05) ev

Il

i

= 14.49 ev
= 0.5325 H 4. 1)
Similarly let \:T_/‘ ana Wl be the wave function and the

It
electrenic energy of the ilowest 2 state of CO which dissociates
‘ : c 3p 4 , W,
to atoms € and O 1in P states, and Y, and 2. be those for
It . , , ) - +
the Z state which dissociates to ions C and O in 4s

‘ . , 23
states. Then using ionization potential ~ of O atom, and electron

affinity24 of C atom we obtain

W (%) —W (e) = (L. P of 0) — (E.A. ofC)
= (13.61 - L12) ev
= [2.49 ev

0.4590 H

I

(4.2)
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Making use of the electronic energies of N, C~ and O+ which are
computed from ionization potentials given in Moore,23 the energy

difference of 2N — (C + O+) is given by
0
W\ (80) — W, (e0)

= ( (L ps. of 0F) +(T.B. ofc') +(E. A of¢)} —2 (L R.oF W)

{ 2029.66 + 1029.81 +1.12} — 2:14.95.65 Vv
89.29 ev

Il

I

= 3.28 H .
4.3)
This is to be compared with the value calculated by Eq. (2.34),
e : LA

which agrees well with the empirical value [Eq. (4.3[] .

The calculation of the energy difference between C + O atoms
and N + N atoms (ground states) using l/é-expansion method is
given in Appendix. The result, W‘(o)(oo) —_ W‘ (0) >~ 2.8 H
is compared with the empirical value, 3.74 H,4 which is computed
using ionization potential23 of each electron of N, C and O atoms.
The less agreement shows that the higher order terms should be
included in %ﬂz -expansions of the electronic energies of atoms.

The electronic energies against the internuclear separation R

are shown schematically in Fig. 2.
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2. Schwartz discriminant

The object of this section is to check the inequality Eq. (2.27b)
which is a check on the validity of taking the leading terms in the
wo- wO

expansion of the electronic energy difference, , and the

dipole moment, (}A) . To find AW(R,) = M(Ro) - V\/‘(‘”(Ko)
where Ry, is the equilibrium internuclear distance of N2, we
expand the molecular energy of CO, E'(R) 5, which is the sum of
the electronic energy and the internuclear repulsion energy, about

the equilibrium internuclear distance, Re

E,(R) = F ) + ZL(R«Q)Z(i—E‘—) 4e-

d R%Je (4.5)
where (O‘zEg /dKz)Q = ‘&e is the force constant for CO.
Also we note that

© - (0) ()
EV(Ry) = =D + E%(e9)
(4.6)
E, Ry = =D + E (o)
where D‘(o) and ]). are the dissociation energies of N2 and

CO. using Eqs. (4.5) and (4.6), we obtain

AWR,) 22 (D =D) + { EPe) - E (=}

{

t (22~ 23) /Ry + (Ro—Re)hke/2

4.7)
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where ZM s Z(‘_ and Zo are the nuclear charges of N, C and O.
By making use of the necessary molecular constants given in Table I,
we obatin

ASW(R) = —3.313 H.

(4.8)

- 4 - 25
Also using { Md= ~0.15 Debye and & =23.8 X 16 e »

we get
(AZyR,~ </u>)2/(20() =0.126 H . (4. 9)

Thus the inequality (2.27b) becomes 3.313 2 o0.126, and therefore
easily confirmed for the case of N2 and CO. The use of the leading

terms in the perturbation expansions is therefore not in conflict with

the Schwartz inequality.

3. Correlation of the electronic states and degeneracy

The proposed perturbation treatment in Section II expands the
wavefunction I' and energy VVI(R) for the lowest state of CO
about those for the lowest state of N2, namely ‘:_T(fo) and Wl(O)(K) B
in powers of A = (ZA - ZB)/(ZA*‘ ZB) — 1/&7 . The
expansions are given in Eqs. (2.5) and (2.6). However, the treatment
in Section 1II overlooks the following difficulty: The electronic
states of CO and N2 which are related by the perturbation theory

must be "adiabatically correlated" in the sense that if A  were

reduced from 1/7 to 0 the states must become identical.
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When the atoms are separated at R =00 we know that in fact

the state C + O 1is correlated with N+ + N , and the state

N + N is correlated with C + 0+. That is:
A0 R0 i 2 (4.10)
although
Lim - GE(O)
A0 Ly L. (4.11)
(R $e0)
When R = O at the united atom (Si ) the energies are independent

of )\ since the nuclei are united and only the total charge Z (=(4-)
matters. The correlations of the states are shown schematically in
Figs. 3a, 3b, and 3c. ;

Now to check the applicability of the proposed perturbation
theory, we consider the crossing point of two states. When R is

the order of the equilibrium internuclear seperation of N2 ,RO 5

we approximate two states of CO as follows:

92,(1) - ‘:—L/,(O) + 9\\},“)
T,0 =0, +28," o

w d)
where %l and %2. are the solutions of the first-order perturbation

equations
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(%, ~6") 2" + v &P =0

. L > l=1,2. (4.13)
Then since w1(1)= W2(1)= 0 and Wl(B) = W2(3) = 0 due to
u-symmetry of V , we have
(0) )\l W(Z)
1 +x28S, 4. 14a)
w0 L AW
2 (4. 14b)

a ) - a) )
where S| :<LP' , \}' > and SZ -<qu ) %Z ) . If we
put Wl(l) = W2 (1) and neglect )\2 terms in denominators, we

obtain the approximate crossing point Ag

Ae = |- 24
c AWR) (4.15)

where AW(O) = W (©) - W (0) and Aw(z) = W (2)

(2)
5 - W .

1 2 1
It is noticed that Ag¢ 1is real only if AW(O) A W < 0, and
we may assume Ag¢ > l/‘7 since it appears to be

| Aw® | >> | Aw(z)l . (See Fig. 4a).



At the limit as R —>00 the separated ions N+ and N are in
different ground 3P states and there exist four '§:+ state526
which have equal energies without the perturbation V and interact
each other with the perturbation V, Hence for N+ + N at
R = 00 , the degenerate perturbation theory should be applied.
Suppose that four ‘E:* states of N+ + N can be described by
the orthonormal wave functions 4>1(a,b), CI) 1(b. a), 4> 2(a,b) and

<I>2(b,a) where 431(b,a) and 472(b,a) are obtained from 4)1(a. b)
and ¢>2(a,b) by interchanging nitrogen nuclei A and B. From

these four wave functions, we can construct two symmetric wave

functions and two antisymmetric wave functions;

-_—

Ve =z { g +$ 5,0}
l{’ :J*l—{‘h(a,b) +4, (b, a)}
You = { 62,0 =4 (b, a)}
1‘”«1 4'— { & (a,b) — Z(b, q)} (4. 16)

Since the perturbation V has u=-symmetry the secular equation is

ll

given by

(4.17)
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where Vi' = < ‘4{ , vV %j >, Solving Eq. (4.17) we obtain the lowest
-

1
first-order energy ‘Jz ( )o
On the other hand the separated atoms N 4+ N are in the same 4S
state at the limit as R~->o0 and can be treated as a non-degenerate

. It ) .
case since only ome 2:3 state exists. Hence in general we shall have

V\/l(oo) — WI(O)(M) + )(z W,(z)(w) 4+ .- (4.18a)

Wy () = Wloo) +A Wy (09 +- -

(4.18b)
Therefore the approximate crossing point at R = oo is
=0) X — ) 4.19
c VVE. (00) . ( )

Since the denominator in Eq. (4.19) is the first order energy coefficient,

)\C (R = o0) may be smaller than i/‘] (See Fig. 4b).

Hence we may conclude that the proposed perturbation theory can be

applied when R is not too large.

4, Calculation of second-order energy and dipole moment

Using the method outlined in Section 1III1.4,5,the second-order

energy and the dipole moment have been calculated on a CDC 1604

computer. For the present calculation, it is convenient to replace the



spin-orbitals 4} { L =1,2, ..., 14) by the spatial orbitals

l}/i (= 1.2, .., 7) with 4%:\[:0(, ¢z=q/'p , 4)3:450( and

ete.  In terms cf the molecular orbitals qf the second-order energy
L

crzfficient becomes [:t:h Eq. (3@59);]

7
(2
L=

(4. 20)
where
w®= 2 !
L & N v - 28 G ue)
4.21)
and one-electron operatcr Y 1is given by
_ - -
V“ZO(TB —V',Z‘ ) . (4.22)

The dipcle moment expression [qu (3065)J becomes

Z
W = Al ZBpR +¢ LZ—' /“?)J + 0 A) (4. 23)

=|

where

w

- T
M= - 21: am{<‘ﬂ,2ufe%>— %(‘P{,Uﬁlﬁ><‘ﬂ,2‘h> ,

(4.24)
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Two sets of approxicarte hRariree-Fock molscular orbitals for N2 were
srpiloyed: {ir Nestern's moleciliar wavefunotizsns” and {2) Ransil's best
P~

, v 2 : : -
limited LCAO-MO q, Fer the functions ‘F ;, four- and seven=term
.

polynomials were emploved:

2
Fio(: “i(z'z*o(all)z 'i‘qiagvl‘f'agsE'ZfQHy(B) (4. 25a)

and

~?
N

o = Fu e (0 £ 0 B ra, 1)

(4.25b)

where % and yl are prolate shex»idel conrdinates defined by

0 (4.26)

The variational cecefficients aLJ , 1n Eqs. {4.25a) and (4.25b) were
determined by the wmethod described in Seorvicon IT1I. 4.

It should be noticed that the opervatcrs VY and /u have u-symmetry.

L
and therefore the rfunctiocns ‘F., should alsc have u-symmetry. Hence
t

the off-diagonal terms 1in Egs. (4.2i) apd (‘4024} and aisc in Egs. (3.51)
and (3.58) vanizh unlesz the spatial funcrions \Pi and ; have

different inversiocn symmetry, Furthermors, ths raguired molecular
: E g

mph
4 , Mmyn o2
integrals <X} §Z ’lvp. X > and <X’§ '( X > R
where X and 9( ave Slatev-type AOD's centered at atom A or B,

are easlly expressed in ferms of the zuxiitiary finction
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A= | % g™
n
(4.27)

+1 |
By (t) = g Q‘ﬂl n"an

~| .

The calculated results of the second-order energy, molecular energy and
dipole moment are given in Table II. To compare the present results
with those of a direct Hartree-Fock calculation, the molecular energy
and dipole moment of Nesbet's3 molecular wavefunction for CO are
shown in Table 1III. To further show the dependence of the second-
order energy and dipole moment on the choice of trial functions zz
the coefficients in the four- and seven-term perturbation polynomials
[Eqs. (4.25a) and (4.25b)] , and also the orbital contributions to
the second-order energy and dipole moment are given in Table IV.

The results for R = 2.068 B wusing Ransil's27 and Nesbet's3
molecular wavefunctions for N2 as zeroth-order wavefunction show that
the molecular properties in this calculation are not very sensitive
to the choice of zeroth-order wavefunction. (See Table 1II).
Furthermore, the convergence of the second-order energy was fairly
good for the trial functions chosen, as can be seen in Tables II and
IV.

The calculated molecular energy of CO 1is too low by 2.0 ~~ 6.0 H

in the given range of R and decreases too fast as R becomes larger.
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(See Tables II and III). Hence the calculated molecular energy does not
give a minimum in the range of R investigated as implied by Eq. (2.12).
In an attempt to get an upper bound to the molecular energy E of

CO , we approximate the ground state of CO as

qd — q{(o)_‘_)&q’f(l)

and the expectation value of the electronic Hamiltonian H = Ho + ;\ v

is computed. The expectation value W(l) 1is given by

2
W(@Q) = W(O) + M.(_.)

]- +)\ZS (4.29)
where S =< g&fl), lga(l) > and the first- and third-order terms do
not appear due to the u-symmetry of V. Now gEﬂvis approximated by
Nesbet's3 molecular wavefunction for N2 and q?u)by that (with seven-
term perturbation polynomial) determined by the uncoupled Hartree-Fock
approximation. As shown in Table V, the estimated expectation value
does not give an upper bound to the molecular energy E (cf. Tables 1
and 1II). This may be attributed to the defect of the uncoupled
Hartree-Fock approximation for the present problem, since the zeroth-
order wavefunction appears to be a good analytic approximation to the
Hartree~Fock function.

The calculated dipole moment of CO 1is ridiculously large in

3,4

magnitude compared with the results of Hartree-Fock calculations and

the experimental value.5 The large magnitude of the dipole
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moment is mainly due to the abnormally large contribution from the the.i7cu
orbital. The polarity, C+ O-, agrees with the Hartree-Fock results
at the equilibrium distance, but does not change sign in the vicinity

of R = Rg , unlike the results of the Hartree-Fock calculation.
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V. DISCUSSION .

The present quantitative results of this theory for the isoelectronic
molecules N2 and CO are disappointing. The calculated molecular
energy of CO 1is too low and does not give a minimum in the given range
of internuclear separation R. It is shown, however, that the polarity
of the electric dipole moment of CO agrees with the results of recent
Hartree-Fock calculations3’4 at the equilibrium separation, in spite of
too large value in magnitude. It should be noticed that SCF-LCAO-MO
approximation to the Hartree-Fock solution of N2 was employed for
zeroth-order wavefunction, and the uncoupled Hartree-Fock approximation
was used to determine the second-order energy and the first-order wave-
function. The use of the coupled Hartree-Fock approximation might
improve the result.

It is interesting to note that the molecular energy difference
AFE = ECO — ENz_ may be obtained directly by means of the integral

Hellman-Feynman theorem formulated by Kim and Parr,28 In this case the

theorem takes the form,

<:‘QZCOJ,A\V/gth:>
{0, B>

2B = —R& R +

(5.1)

where the first term is the nuclear-nuclear repulsion energy difference
and qfdo and @Nz may be approximated by Hartree-Fock wavefunctions
for CO and N2' The advantage of Eq. (5.1) is that it is valid whether
or not AV is small. 1If the right hand side of Eq. (5.1) is expanded



in powers of A , it reduces to the perturbation series, Eq. (2.9).

A related perturbation treatment for acetylene based on the
isoelectronic molecule N2 has been performed by Gilson and Arents.29
However, in this case the first-order energy does not vanish, and it
alone was calculated. The error involved was about twice that in the
present paper, but in the opposite direction.

The significance of this theory is that it is a method of investi-
gating molecular properties using perturbation theory and introducing
the possibility of varying the nuclear charge. Furthermore, the
perturbation operator (See Eq.(2.4)‘] has u-symmetry and is a sum of

one-electron operators. The symmetry feature of the perturbation

operator simplifies the actual calculation of the energy and other

molecular properties for diatomic molecules as shown in Section 1IV. 4.

The one-electron character of this operator allows the use of the well-
developed theory of the one-electron perturbation effect. (Cf. Section

I11).

This theory might be extended to polyatomic molecules and crystals.

For example, borazine, B3N3H6 , might be treated with benzene, C6H6 B

as the unperturbed system, and borazon, (BN)y, , with diamond as the

46

unperturbed system. For thee cases, A= (ZN-ZB)/(ZN-28)= 1/6 .

On the other hand, the diatomic molecule BF , with N2 as the

unperturbed system, would have A = 2/7 , which is probably too large

for the theory to work.
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APPENDIX

Energy difference between C + 0O atoms and N + N atoms (ground

states) by 1/Z-expansion

For an atom with charge Z and N electrons the electronic energy

can be expanded by
)
E(Z,N)= 2%+ 2 W)+ W+ €Wzt

3 . . .
For C atom (TP) we must consider the degenerate configurations

152232 ZFa and 132 2P4' . For the 3P state of C -

L

atom with M = 1 and MS = 1 th‘e'descript‘i'on30 required are

) 15,158, 250, 238 , 2P0ty 2R,
(ii)130(71$@; Eﬂo(, Zﬂ_@, 2P, 2P- o

From each description, only one Slater determinant is needed. Hence we

obatin a 2 x 2 matrix; and,the secular equationm is
: [ i S o "

{))
g o =0
Hiz ‘Hy,— € (5)_ " ROV N

by cod

-

R

H,. is given by

H i l“.“ HE

b= S (- ka) . w
<b

Q



where %&b and KaJ, are the coulomb and exchange integrals between

the hydrogenic spin-orbitals a and b. Crossley and Coulson31
computed coulomb and exchange integrals for hydrogenic wave functions.
The off~diagonal term is

L
H, = <2s 2s, 2Pt 2P->

(A4)

where integration over the spin parts has been carried out. . Then

rearanging the integrand and using the Ufford and Shortley phase

conversion

r1|2 — <:E2$ EZF% > W%; 2s 2‘2f:>
kK (2s,2p)

I

(A5)

gince the wave functions are hydrogenic. Solving the secular equation

(A2), we find G(”(é) = B.Zé H . Hence for C

atom

£6,6) = 36 €9¢) + 66+ -

>~ —34.45 H
(A6)

For the N atom (43 ) and O atom (3P), there is no degeneracy,

Hence we need only consider the configurations, 152252 2?3

for N and 152 asz 2P4 for 0. Hence we

obtain

49
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©)
N: (7,71 =49 € (1) +7ecn) + -~
~ —49.(5 H (A7)
0: 288)={4 €% +5 ¢Vs) + ---
=~ —66.70 H,
(A8)
From Eqs. (A6), (A7) and (A8) we get
AN =C(58) +¢(6,6) —2¢(, 1)
= [ 64 €98) +3{ €¢) =98 €9 (M)}
+{eeVs) +6 €4y —14 Yy} -
>~ —2.85 H,
(A9)
This is to be compared with the empirical value calculated from the
ionization potentialaaof each electron of N, C and O atoms,
AWemF = - 3.74 H . (A10)
Hence

AWeat, —AWemp = 0.89 H = 24.2 ev .

(Al11)
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TABLE T

53

Experimental properties of Nitrogen and carbon monoxide

. 6 -1
Rep (A) Eg (H) Dg (ev) ke (10 "dyne cm ) )Me(D)
N, 1.094% -109. 586° 9.902% 2.296% 0.
co 1.1281% | -113.377° 11, 242° 1.906% 0.118(c o ¢
a. See reference 26.
b. See reference 2.
c. A, G. Gaydon, Dissociation Energies, revised edition (1953):
Dg is corrected for zero-point energy.
d. See referencesl and 5.
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TABLE 1III

3
Energy and dipole moment of Nesbet's molecular
wavefunction for CO

R (B) 1.808393 1.932 2.132 2.323 2.455607

E (H) ~-112.66220 -112.72952 | -112.75878 -112.73211 -112.70106

X a. u) 0.0830 -0. 0032 -0. 1562 -0.3246 -0.4342
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TABLE V

Estimated expectation value of Hamiltonian with

Y = & 0) + X ‘2(1 . (‘I;Z(O) was approximated b{
Nesbet's” molecular wavefunction for Ny and ‘;Z( )

by the function containing the seven-term perturbation
polynomial determined by the uncoupled Hartree-Fock
approximation.
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R (B)

A% @

(1)
I+>\zs

E (1)

1.744393 1.868 2.068 2.268 2,391607
0.0808 0.1066 0.1731 0.2819 0.3839
~4,997 -5.311 ~5.776 -6.203 -6.408
-114.433 -114.789 |-115.231 | -115.573 -115.711
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LIST OF FIGURES

_ ~| ~{ _ .
1. Operators '\}'E— VEL' m"o. and /“i‘ Z.i (constant AZOR is omitted.)

2. Schematic plot of the empirical electronic energy W(R) against the
internuclear separation R for relevant states of CO and N2.

3. Correlation of the electronic states.
a. R= oo
b. R xR,
c. R =0

4. Schematic plot of the electronic energy W against the perturbation
paramer ) . wl(l) and W,(l) are given by Eqs, (4.14a) and (4.14D),
and Wl(oo) and Wz(c\o) by Eqs. (4.18a) and (4.18Db).
a. R xR,
b. R = oo



60

— — a— - ——— t— o emtw  cm—— am—— e




61

N N
ha.a0
W2(0) N+N " (ev)
I+
>
Y W > 89,29
W(R) A
2.q
c +0t
o W, 1249
> C+0-
W,
Si
O oo



Fig.

3a

N +N

N+N

c+0?

C+0

/7

62



Fig,

3b

N2 ()

/-

63



Fig. 3c
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